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Abstract Magnetic resonance spectroscopy (MRS) and spectroscopic imaging
(MRSI) are increasingly recognized as potentially key modalities in cancer diagnos-
tics. It is, therefore, urgent to overcome the shortcomings of current applications of
MRS and MRSI. We explain and substantiate why more advanced signal processing
methods are needed, and demonstrate that the fast Padé transform (FPT), as the quo-
tient of two polynomials, is the signal processing method of choice to achieve this goal.
In this paper, the focus is upon distinguishing genuine from spurious (noisy and noise-
like) resonances; this has been one of the thorniest challenges to MRS. The number of
spurious resonances is always several times larger than the true ones. Within the FPT
convergence is achieved through stabilization or constancy of the reconstructed fre-
quencies and amplitudes. This stabilization is a veritable signature of the exact number
of resonances. With any further increase of the partial signal length N , towards the full
signal length N , i.e., passing the stage at which full convergence has been reached,
it is found that all the fundamental frequencies and amplitudes “stay put”, i.e., they
still remain constant. Moreover, machine accuracy is achieved here, proving that when
the FPT is nearing convergence, it approaches straight towards the exact result with
an exponential convergence rate (the spectral convergence). This proves that the FPT
is an exponentially accurate representation of functions customarily encountered in
spectral analysis in MRS and beyond. The mechanism by which this is achieved, i.e.,
the mechanism which secures the maintenance of stability of all the spectral parame-
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Department of Oncology–Pathology, Karolinska Institute, P. O. Box 260, Stockholm, SE 17176,
Sweden
e-mail: Dzevad.Belkic@ki.se

K. Belkić
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ters and, by implication, constancy of the estimate for the true number of resonances
is provided by the so-called pole-zero cancellation, or equivalently, the Froissart dou-
blets. This signifies that all the additional poles and zeros of the Padé spectrum will
cancel each other, a remarkable feature unique to the FPT. The FPT is safe-guarded
against contamination of the final results by extraneous resonances, since each pole
due to spurious resonances stemming from the denominator polynomial will automat-
ically coincide with the corresponding zero of the numerator polynomial, thus leading
to the pole-zero cancellation in the polynomial quotient of the FPT. Such pole-zero
cancellations can be advantageously exploited to differentiate between spurious and
genuine content of the signal. Since these unphysical poles and zeros always appear
as pairs in the FPT, they are viewed as doublets. Therefore, the pole-zero cancellation
can be used to disentangle noise as an unphysical burden from the physical content in
the considered signal, and this is the most important usage of the Froissart doublets in
MRS. The general concept of signal–noise separation (SNS) is thereby introduced as
a reliable procedure for separating physical from non-physical information in MRS,
MRSI and beyond.

Abbreviations
Ala Alanine
AMARES Advanced Method for Accurate Robust and Efficient Spectral fitting
Asp Aspartate
au Arbitrary units
BPH Benign prostatic hypertrophy
Cho Choline
Cr Creatine
Crn Creatinine
CT Computerized tomography
FID Free induction decay
FFT Fast Fourier transform
FPT Fast Padé transform
GABA Gamma amino butyric acid
Glu Glutamate
Gln Glutamine
Glc Glucose
GPC Glycerophosphocholine
1H MRS Proton magnetic resonance spectroscopy
HLSVD Hankel–Lanczos Singular Value Decomposition
Ins Inositol
Iso Isoleucine (Iso)
Lac Lactate
LCModel Linear Combination of Model in vitro Spectra
Lip Lipid
Lys Lysine
Met Methionine
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MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
ms Milliseconds
NAA N -acetyl aspartate
NAAG N -acetyl aspartyl glutamate
NMR Nuclear magnetic resonance
PA Padé approximant
PCho Phosphocholine
PCr Phoshocreatine
PET Positron emission tomography
ppm Parts per million
PSA Prostate specific antigen
RT Radiation therapy
SNR Signal-to-noise ratio
SNS Signal–noise separation
Tau Taurine
TE Echo time
Thr Threonine
Val Valine
VARPRO Variable Projection Method
ww Wet weight
1D One dimensional
2D Two dimensional

1 Introduction

1.1 Increasing appreciation of magnetic resonance spectroscopy as a potentially
key modality for cancer diagnostics

Magnetic resonance (MR)-based methods are becoming the modality of choice for
a rapidly expanding range of applications in oncology. Magnetic resonance imaging
being non-invasive, highly sensitive and free from ionizing radiation is indispensable
for timely detection of many cancers. However, magnetic resonance imaging (MRI)
often has poor specificity. Molecular imaging through magnetic resonance spectros-
copy (MRS) and spectroscopic imaging (MRSI) can enhance specificity by detecting
metabolic features characteristic of malignancy. Also, molecular changes often pre-
cede morphologic alterations, so that sensitivity can be further improved by MRS and
MRSI. This kind of molecular imaging is becoming widely appreciated as an extraor-
dinary opportunity for early detection, by identifying key changes for the emergence
and progression of cancer on the molecular level.

An example of how MRS can improve the specificity of MRI is provided in Fig.
1. On the left panel two hyperlucent lesions are observed via T2 weighted MRI.
These two lesions were practically indistinguishable, even with contrast enhancement
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Fig. 1 Left panel: T2 weighted MRI shows two, very similar appearing hyperlucent lesions. Right panel:
spectrum obtained via MRS from the lesion marked with the arrow in the left panel. The high ratio of
choline (Cho) to creatine (Cr) and of choline to N -Acetyl-Aspartate (NAA) suggested malignancy. Histo-
pathology confirmed this, with the finding of a low grade-astrocytoma. The abscissa on the right panel is
chemical shift as a dimensionless frequency in parts per million (ppm), whereas the ordinate is intensity
in arbitrary units (au). Chemical shifts indicate the frequencies at which various metabolites resonate to
the external excitation. Adapted from: Dr. Erik Akkerman, Academic Medical Center, Amsterdam (private
communication)

(not shown). The metabolic information provided by MRS (right panel) suggested that
only the lesion with the arrow was malignant, and this was subsequently confirmed
with a histopathologic diagnosis of low-grade astrocytoma.

In the recent period, striking attention has been paid in leading investigative clinical
journals to in vivo MRS as a potentially key non-invasive modality for cancer diagnos-
tics [1–13]. The combination of anatomic localization and metabolic information is
often decisive for identifying cancer, especially since metabolic changes can often pre-
cede anatomic/morphologic alterations. This can be invaluable, especially in difficult
cases, e.g., differentiating recurrent tumor from radiation necrosis or post-operative
changes [12,14]. These advantages have become particularly clear for neuro-oncol-
ogy [4,9,13,15–17] and prostate cancer diagnostics [5,6,9,10,18]. Accuracy of breast
cancer detection and prediction of response to chemotherapy have been improved by
MRS, in combination with contrast-enhanced MRI [2,3,9,11,19–21]. MRS has also
increased diagnostic accuracy for other malignancies e.g., thyroid [8] and other types
of head and neck cancers [1,7]. Spectroscopic information from fine needle aspiration
of biopsy specimens has also been found to provide rapid and quite accurate detection
of metastatic melanoma in lymph nodes [22]. Moreover, as a non-invasive method
with the possibility of full volumetric coverage, MRSI can provide vital information
when biopsy is not possible due to potential morbidity. This is particularly the case in
brain tumor diagnostics, where MRS and MRSI are virtually irreplaceable.

Notwithstanding these achievements, there are still important shortcomings of cur-
rent applications of MRS to clinical oncology, that have hampered wider implemen-
tation of this method in cancer diagnostics.
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Very few of the metabolite concentrations or their ratios estimated in the conven-
tional way unequivocally distinguish tumors from normal tissue, nor are these specific
for cancer. For example, infection, infarction and demyelinating disorders frequently
show spectral changes identical to those of brain tumors. Histopathological character-
ization and brain tumor grading have been greatly aided by MRS. Nevertheless, there
are numerous contradictory findings in the literature. Particularly troublesome is the
limited possibility of MRS to detect very small tumors. For breast cancer diagnos-
tics using MRS, this is especially problematic, due to the need for lipid suppression.
A current strategy has been to increase echo time (TE), to decrease overlap with lipid
signal, but this is achieved by a diminution in signal intensity. Also, metabolites with
short T2 relaxation times will have decayed at longer TE; e.g., myoinositol whose
estimated concentrations best distinguished breast cancer from a fibroadenoma in our
analysis [23,24] of in vitro MRS data [25]. Poor signal to noise ratio (SNR) is a major
cause of false negative findings using MRS to detect malignant breast lesions [26].
Breast cancer detection through MRS has mainly relied upon the presence or absence
of a composite (total) choline peak. This compromises diagnostic accuracy, since cho-
line may be observed in benign breast lesions and in normal breast during lactation.
Furthermore, choline is often undetected in small tumors that are then misclassified
as benign [26].

Metabolite ratios are also problematic, being dependent upon TE [27], and affected
by confounding factors including cancer treatment itself. Consequently, malignancy-
defining ratio cut-points vary widely from author to author [14]. Even for prostate
cancer diagnostics where choline-to-citrate ratios are of major help, dilemmas often
arise. For example, in stromal tissue or metabolic atrophy, citrate levels are low with-
out cancer being present, while with prostatic hypertrophy, citrate can still be high
despite coexistent malignancy [14].

For detecting tumors in deep-seated, moving organs applications of MRS are ham-
pered by poor SNR [28]. A case in point is the ovary where early cancer detection is
still beyond current reach. Because of the small size and motion of this organ, in vivo
MRS is mired by problems of resolution and SNR, and yet, there is a rich store of
MR-observable compounds that distinguish benign from cancerous adnexal masses
when in vitro MRS with its attendant high resolution is applied [29–32]. It has been
suggested that insofar as the current problems hindering encoding of high quality
time signals are overcome, in vivo 1H MRS could become the method of choice for
evaluating ovarian lesions [32].

1.2 Optimization of MRS for improved cancer diagnostics needs more advanced
signal processing methods

As will be described in the next sub-section, many problems with current applications
of MRS within clinical oncology are directly related to reliance upon the conventional
signal processing method, i.e., the fast Fourier transform (FFT). Optimization of MRS
for timely cancer detection requires more advanced signal processing. One may won-
der: how could mathematics play such a critical role in medical diagnostics? This is
because data encoded directly from patients by means of existing imaging techniques,
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e.g., CT (computerized tomography) or PET (positron emission tomography), as well
as MRI [33,34] and MRS [35,36] are not at all amenable to direct interpretation, which
therefore need mathematics via signal processing. Global strategies along these lines,
intertwining signal processing with quantum mechanics and mathematical modeling
are detailed in [35,37].

Figure 2 provides a graphic illustration of why mathematical methods are abso-
lutely vital for MRS. The top panel of this figure shows the recorded data, called a
time signal or free induction decay (FID). The abscissa is time in milliseconds (ms)
and the ordinate is the strength (intensity) of the signal in arbitrary units (au). This
FID is a heavily packed oscillating signal whose intensity decays exponentially over
time. However, not even the trained eye of the most astute clinician could decipher
much meaningful information directly from the time signal. Yet, from this time signal
the MR spectrum is obtained, with its clear advantage of depicting a relatively small
number of distinct features that are then more amenable to direct theoretical analysis
and interpretation. Such a spectrum is displayed on the middle panel via the total
absorption shape spectrum.1 This is obtained by a mathematical transformation of the
time signal into its complementary (dual) representation, in the frequency domain.
Here, as alluded to above, more discernable information is provided. This total shape
spectrum provides qualitative information about the sum of metabolites, but not their
components. Therefore, while more revealing than the time signal, the output data is
still qualitative and inconclusive. Note that the customary data analytical techniques,
i.e., the FFT, take us only to this second step—the total shape spectrum (envelope).

In other words, from the absorption total shape spectrum on the middle panel of
Fig. 2, more information is needed before the metabolites can be identified and their
concentrations reliably determined. Namely, how many metabolites underlie each peak
in the total shape spectrum and what is the relative strength of each of these compo-
nents? From the shape spectrum, this information can only be guessed, as customarily
done by various fitting algorithms used in the MRS literature. However, more advanced
mathematical methods, such as the FPT, are needed to achieve this vital next step with
certainty. In the lower panel of Fig. 2, the components are shown immediately under
the total shape spectrum. It is clearly seen that sometimes two, three or even more
peaks underlie a given structure, and each of these peaks can, in principle, represent
a metabolite.2 In the next sub-sections, we will explain how the fast Padé transform
unequivocally provides this key information for MRS, which has been lacking with
customary data analytical techniques.

The strategic importance of robust and uniform data processing of MRS signals
has been strongly emphasized [3,38] at e.g., the expert meeting on MRS for oncol-
ogy, held recently by the US. National Cancer Institute [3], as well as at a special
conference in November 2006 on Data Processing in MR Spectroscopy and Imaging
by the International Society for Magnetic Resonance in Medicine (www.ismrm.org/
workshops/datao6/index.htm).

1 The absorption spectrum is the real part of the corresponding complex-valued spectrum.
2 Each metabolite, being a molecule, can have more than one resonance.
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Fig. 2 Top panel: time signal or FID. The middle panel is the absorption total shape spectrum. The lower
panel shows the absorption total shape spectrum and the underlying component shape spectrum

1.3 Customary (non-optimal) data analytical techniques used in MRS

The most commonly used analytical technique in MRS is the fast Fourier transform.
The FFT has been widely used for data processing in the clinical setting because of
its steady convergence with increasing signal length N at a selected bandwidth (or
equivalently, with increasing total acquisition time T ), such that reasonable looking
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MR shape spectra are obtained for not so severely truncated time signals.3 This steady
convergence means that there are no major troublesome surprises for varying T . In
sharp contrast, nearly all parametric estimators show marked instability as a function
of the signal length. This is manifested in dramatic oscillations (e.g., spikes and other
artificial spectral structures) that appear prior to convergence (if at all), as pointed out
in Refs. [35,36]. Needless to say, such spurious findings are anathema to the clinical
demands for reliable spectral information aimed at aiding diagnostics. Although com-
putationally stable, the FFT only estimates the total shape of the spectrum, and does
so with low-resolution, which is equal to 2π/T .

Within the FFT, a complex-valued Fourier spectrum is defined by using only a
single polynomial:

F = 1

N

N−1∑

n=0

cne2iπnk/N ; 1 ≤ k ≤ N − 1, (1)

with pre-assigned angular frequencies, whose minimal separation 2π/T is determined
by the total acquisition time T = Nτ , where τ is the sampling time (inverse of the
chosen bandwidth). The FFT spectrum is defined only on the Fourier grid points
2πk/T (k = 0, 1, . . . , N − 1).

The strategy applied in attempts to improve resolution has been to increase T and
thereby decrease the distance 2π/T between adjacent gridpoints. This does not solve
the problem at all, because MRS signals become heavily corrupted with background
noise at longer T . Since these time signals decay exponentially as an FID (see top
panel of Fig. 2), larger signal intensities are observed early in the encoding. It is, there-
fore, advantageous to rapidly encode FIDs, avoiding long T at which mainly noise is
measured. Thus, there are two mutually exclusive requirements within the FFT whose
attempts to improve resolution lead to worsened SNR. The FFT is a linear transform,
and, as such, imports noise as intact from the time to the frequency domain, further
contributing to poor SNR [35]. Moreover, the FFT has no extrapolation property based
upon the encoded FID.

The FFT is limited to non-parametric estimation, providing only the total shape or
envelope of spectral structures, but not their number or quantification. Peak param-
eters are subsequently extracted in post-processing by fitting, which is non-unique.
This means that e.g., 2, 3 or more resonances can yield the same fit to a given structure,
with no way to tell which of the fits is correct, as reminiscent of the famous Lanczos
example [39,40]. This can be inferred from Fig. 2 (bottom panel). These problems
are most pronounced for overlapping resonances, which are often clinically important
[41]. Many contradictory findings in tumour diagnostics are related to whether or not
a given metabolite was included in the original expansion basis set [42,43], as in the
Linear Combination of Model in vitro Spectra (LCModel) [44]. Besides the fact that
fitting is non-unique, much information contained in the signal is not obtained in an

3 In practice, all experimental time signals are truncated, since infinitely long signals required by the exact
Fourier analysis cannot be measured. This is not critical for relatively long signals, but considerable spectral
deformation (e.g., Gibbs ringing, etc.) can arise for severe truncations.
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adequate way, such that estimates for position, width, height and phase of resonances
can be biased [35]. Metabolite concentrations can only be accurately computed if
these parameters are obtained in a reliable way with an intrinsic and robust error anal-
ysis. The vital need for this quantitative information in cancer diagnostics has been
repeatedly underscored with respect to MRS [14,26,32,39,45,46].

1.4 Novel (optimal) data analytical methodologies, the fast Padé transform
(FPT): specific relevance for MRS in cancer diagnostics

1.4.1 Improved resolution and signal to noise ratio of the FPT

In recent publications [35,36,47–52], it has been conclusively demonstrated that high
resolution methods, notably the fast Padé transform, the FPT as it is acronymed, can
overcome many of the above-described limitations of the FFT, that hamper further
progress of MRS in cancer diagnostics. The FPT is a non-linear polynomial quotient
PL/QK of the exact finite-rank spectrum (Green function) given by the Maclaurin
series with the encoded raw time signal {cn} as the expansion coefficients. Non-linear-
ity of the FPT yields noise suppression. The FPT shares the FFT’s most favorable prop-
erty, i.e., the FPT is a stable processor when signal length is systematically augmented
at a fixed bandwidth, producing no spikes or other spectral deformations [35,52]. In
contrast to the FFT, it is known that the FPT is a powerful interpolator and extrapolator
[35]. Due to extrapolation, which is present in the implicit polynomial inversion via
Q−1

K in PL/QK , inference is gained from a non-measurable infinite number of signal
points by using only the available finite set {cn} (0 ≤ n ≤ N − 1, N < ∞). The FPT
can use the fixed Fourier mesh 2πk/T (k = 0, . . ., N − 1), but this is not mandatory,
as opposed to the FFT. In other words, the FPT can be computed at any frequency
ω. Unlike the FFT, resolution in the FPT is not pre-determined by T . Moreover, due
to its parametric estimation and extrapolation capabilities, the FPT has a much better
resolving power than the FFT.

Rapid convergence, improved SNR and resolution, plus robust error analysis yield
markedly enhanced information content extracted by the FPT from in vivo MRS sig-
nals, relative to the FFT, as demonstrated in Refs. [36,47,48,52] via detailed compar-
isons of the FPT and FFT using clinical in vivo MRS FIDs. Further improvements in
resolution by reducing Gibbs ringing have also been achieved [53]. Crucially, unique
to the FPT is its unprecedented capability to unequivocally identify and separate noise
from the genuine/physical content of the signal by using the powerful concept of
Froissart doublets (pole-zero cancellations) [50,51]. In Refs. [36,47–49,52,54], we
applied the FPT to in vivo MRS FIDs [55] of brain occipital grey matter recorded
from healthy volunteers at high magnetic field strength (4T and 7T). These FIDs are
long (N = 2048) with excellent SNR, so that the total shape spectra from the FFT
with all N points served as gold standard. In Refs. [36,54], we demonstrated that at
any level of truncation of the full signal length N at a fixed bandwidth, the clinically
relevant resonances that determine concentrations of metabolites in the investigated
tissue are significantly better resolved in the FPT than in the FFT. In particular, the
FPT can achieve the same resolution as the FFT by using twice shorter time signals.
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Self-contained verification of all the results from the FPT is secured by using two con-
ceptually different, but nevertheless equivalent algorithms. These are the two variants
of the FPT, initially defined inside (|z| < 1) and outside (|z| > 1) the unit circle,
but extended automatically to the whole complex frequency plane by the Cauchy
analytical continuation principle. The difference between the converged spectra from
these two variants of the FPT coincides with the experimental background noise level.
This represents one of the intrinsic cross-validations of the findings and robust error
analysis of the FPT without relying upon the FFT or any other estimator [48,52]. For
establishing the validity of parametric methods, error analysis is of critical importance.

In Fig. 3 adapted from Ref. [50] we compare the performance of the FPT and the
FFT for high-resolution absorption total shape spectra. These spectra correspond to an
FID typically encoded clinically from a healthy human brain via MRS using an exter-
nal static field B0 = 1.5 T and a short TE of 20 ms, with total length N = 1024 and
bandwidth 1000 Hz so that τ = 1 ms (see e.g., [56]). Resolution and convergence rates
are clearly seen in Fig. 3 to be much better in the FPT than the FFT at any partial signal
length NP = N/M(M > 1). Especially striking is that already at one eighth of the
signal length (N/8 = 128), the FPT almost completely reflects the converged spec-
trum, whereas the FFT requires the total signal length N to achieve full convergence.
This markedly enhanced resolution capacity of the FPT can be of vital clinical impor-
tance in cancer diagnostics, as demonstrated, with respect to distinguishing malignant
versus benign ovarian lesions [57,58].

1.4.2 Exact quantification by the FPT

Notwithstanding interest in the initial studies for MR absorption total shape spec-
tra using the FPT [36,52], the primary goal in the related most recent publications
[50,51,59,60] has been to go one critical step further by explicitly reporting the numer-
ical/tabular results via reliable quantification in MRS. In other words, we have sought
to go beyond the qualitative information on shape spectra, to provide the actual spec-
tral components, i.e., the optimal, quantitative information, the importance of which
was illustrated by the example in Fig. 2. In [37,50,51] it is described, in detail, how
the FPT unequivocally reconstructed the spectral parameters, so that the component
spectra could be generated for all the physical resonances from time signals similar
to those recorded in clinical scanners. In Refs. [35,50,51,54] validation is provided
for the powerful computational algorithms by which the FPT yields quantitative spec-
tral parameters. This is done without fitting and the solution is unique. Moreover,
the FPT also outperforms other parametric estimators as well as fitting techniques
used in MRS, such as HLSVD (Hankel–Lanczos Singular Value Decomposition) [61],
VARPRO (Variable Projection Method) [62], AMARES (Advanced Method for Accu-
rate Robust and Efficient Spectral fitting) [63], and LCModel [44], etc.

These studies represent a critical step forward for signal processing in MRS, with
particular relevance to clinical oncology, due to the unprecedented capability of the
FPT to unambiguously resolve and quantify all the physical resonances. There is an
urgent need for accurate quantification to determine metabolite concentrations, so that
MRS can be better used to detect and characterize cancers, with clear distinction from
non-malignant processes. Metabolite concentrations can only be accurately computed
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if the spectral parameters are obtained in a reliable way with an intrinsic and robust
error analysis, accompanied by the ability to clearly identify and thereby separate
noise from the physical signal. This is uniquely provided by the FPT via the powerful
concept of noise filtering called the Froissart doublets (pole-zero cancellations) [51].

2 Theory

As elaborated in detail [35,37,50,51,59] the theoretical basis for the mathematical
model for any time signal and the corresponding spectrum emerges uniquely from
the quantum dynamics of the investigated system. This is because signal processing,
which has thus far been considered as a discipline on its own, is part of a larger the-
oretical framework—the most successful physics theory: quantum mechanics. This
determines that the optimal mathematical model for the frequency spectrum of time
signals is prescribed quantum-mechanically to be the ratio of two polynomials, i.e.,
the FPT. Thus, just as in the time domain where quantum mechanics predicts the
form of the time signal as the sum of complex-valued damped exponentials, by virtue
to the time-frequency dual representation, the same physics automatically prescribes
that the frequency spectrum is given by the Padé quotient of two polynomials. This is
the origin of the unprecedented algorithmic success of the FPT, via its demonstrable,
exact reconstructions, as shown in our Refs. [35,50,51].

The polynomial quotient PK /QK (diagonal) or PK−1/QK (para-diagonal) as a
rational function in harmonic variable z−1 = exp(−iωτ), is known in the literature
as the Padé approximant (PA). In signal processing, the PA is alternatively called the
fast Padé transform [64,65] to highlight the possibility of obtaining a shape spectrum
from an FID via a non-parametric estimation as reminiscent of the FFT. The latter
type of estimation in the FPT is done by simply evaluating the Padé spectrum PK /QK

without ever searching for any of the spectral parameters that are the complex fre-
quencies {ωk} and amplitudes {dk}. The FPT is the only parametric estimator which
computes the envelope spectrum without the need to obtain the set {ωk, dk} first. This
is in sharp contrast to e.g., HLSVD [61], which computes the envelope spectrum by
first estimating the peak parameters {ωk, dk}. Most importantly, the FPT can perform
parametric reconstructions by rooting the polynomial QK whose roots {z−1

k } yield
{ωk} and this readily leads to {dk} for each resonance. For example, the para-diagonal
FPT treats the exact spectrum, i.e., the mentioned finite-rank Green function G N (z−1),
via the unique ratio of two polynomials PK−1(z−1)/QK (z−1) at any frequency ω:

G N (z−1) = 1

N

N−1∑

n=0

cnz−n, (2)

G N (z−1) ≈ PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

, (3)

PK−1(z
−1) =

K−1∑

r=0

pr z−r , QK (z−1) =
K∑

s=0

qs z−s, (4)
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where z = eiωτ and zk = eiωkτ . The para-diagonal (L = K −1) and diagonal (L = K )

PA are most frequently used from the set of the general PA, PL/QK , because they
incur minimal error in practice. In the FPT, the sum

∑K
k=1 dk/(z−1 − z−1

k ) represents
the complex-valued total shape spectrum (envelope) which is the sum of the K cor-
responding component spectra, dk/(z−1 − z−1

k )(1 ≤ k ≤ K ). Here, PK−1 and QK

are readily extracted from the input data G N by treating the product G N QK in the
defining relation G N ∗QK = PK−1 as the standard convolution [35,65,66].

3 Signal processing

We perform computations [35,49] using the FPT to reconstruct spectral parameters
for an MRS time signal which closely matches FIDs encoded on clinical scanners via
proton MRS from the brain of a healthy volunteer [55,56]. Using the FPT to analyze
the FIDs, the coefficients {pr , qs} of the polynomials PK−1 and QK are computed
efficiently by solving the systems of linear equations deduced from definition (2). In
so doing, we recognize that the product in G N (z−1)∗QK (z−1) = PK−1(z−1) is a
convolution, as mentioned [65,66]. Once {pr , qs} are obtained, the (non-parametric)
envelope spectrum can be computed by evaluating the quotient PK−1(z−1)/QK (z−1)

at any selected frequency ω, as stated. To extract the peak parameters, one solves the
characteristic equation QK (z−1) = 0. This polynomial equation has K unique roots
z−1

k (1 ≤ k ≤ K ), so that the sought ωk is deduced via ωk = (i/τ) ln(z−1
k ). A sim-

ilar procedure applies to the diagonal FPT. Peak assignments are made according to
the most accurate available in vitro data from e.g., Refs. [25,31,67,68]. For reliable
quantifications in MRS, it is not only the peak positions Re(ωk) that count4; the peak
widths Im(ωk) and the complex amplitudes dk are also critical. This is because the kth
metabolite concentration is computed from the reconstructed peak parameters. From
the spectral parameters, one can deduce the peak area underneath each resonance.
Peak area is proportional to the concentration of the metabolite, relative to a selected
reference concentration (water or another metabolite). Therefore, even for accurately
determined ωk’s, the problem of obtaining the precise estimates of the dk’s becomes
extremely important. In the FPT, the kth amplitude dk depends only upon the kth root
z−1

k and it is obtained analytically from the Cauchy residue theorem [35,36,50]. More-
over, unlike guessing in HLSVD and in all the fitting algorithms from MRS, the FPT
determines the true number K of resonances exactly, by e.g., the concept of Froissart
doublets (pole-zero cancellations) [51,69]. Overall, the FPT completely avoids fit-
ting and accomplishes accurate quantification by reliably extracting the parameters
of all the physical metabolites directly from the raw, unedited, encoded FID. Specif-
ically, when used as a parametric estimator, the FPT first explicitly finds all the peak
parameters {ωk, dk}(1 ≤ k ≤ K ) of every physical resonance without ever using the
Fourier spectrum, or any other spectrum. A spectrum can be subsequently constructed
for e.g., visualization purposes, in any of the desired modes (absorption, magnitude,
dispersion, power).

4 Hereafter, Re(u) and Im(u) denote the real and imaginary parts of a complex number u.
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4 Results

4.1 Practical implementation of the benchmarked FPT for extracting metabolite
concentrations from MRS signals

As presented in detail in [37], benchmark studies have now been performed demon-
strating that the FPT provides the urgently needed accuracy in extracting metabolite
concentrations from MRS signals.

The next step is the practical implementation of this methodology, so that it can
become a hands-on tool for clinicians. In Fig. 4 an example is shown of how this
can be achieved, from the analysis performed in Refs. [50,51,69]. This was for an
MRS time signal that closely matches FIDs encoded via proton MRS from the brain
of a healthy volunteer [56]. The parameters for each of the 25 reconstructed peaks are
first presented in the upper left panel (i) of Fig. 4. These are the position, width and
absolute value of the amplitude. Then, in the upper right panel (iv), the metabolite
assignments are given. It is seen, e.g., that there are four mobile lipid components
whose peaks ## 1–4 are in the frequency range between 0.985 and 1.689 ppm. The
T2 relaxation times and the numerical values of the concentrations for each of these
25 metabolites are given, computed using the width and amplitudes with the Larmor
frequency of 63.864 MHz corresponding to the magnetic field strength of 1.5 T. In
addition, the fraction of the concentration of a given metabolite is shown relative to
that which is most abundant (in the present example this is peak #6 corresponding
to NAA at 2.065 ppm). Thus, for example, it is seen that peak #16 corresponding to
choline (Cho) at 3.239 ppm has a concentration of 6.240 mMol/ww and its ratio to
NAA at 2.065 ppm is 0.56. The component spectrum is shown with the peak numbers
in the left middle panel (ii) of Fig. 4 and the total shape spectrum on the right middle
panel (v). Comparing these two middle panels, it is clear that many of the peaks are
closely overlapping, and could not be deciphered with certainty from the total shape
spectrum. In the bottom left panel (iii), the peak assignments together with the peak
numbers are given for each of the 25 components, with the localization of the peaks.
The absorption total shape spectrum (as the sum of all the absorption component shape
spectra with all the peak assignments) is displayed on the bottom right panel (vi).

Especially instructive and rewarding for the spectral decomposition by the FPT is to
compare the left and right bottom panels (iii) and (vi) in Fig. 4. There, we can clearly
see how deceiving and misleading it is to attempt to surmise which components are
hidden underneath a spectral structure. For example, rather than reconstructing exactly
four mobile lipids under the two broad structures in the range 1–2 ppm, as done unam-
biguously by the FPT, equally acceptable (in the least-square sense) results of fitting
by the customary methods from MRS (VAPRO, AMARES, LCModel, etc.) could
“reconstruct” three, five or more peaks that would all give the same absorption total
shape spectrum from 1 to 2 ppm, similarly to the Lanczos paradox [39,40]. Similar
or even more serious problems with clinically unacceptable ambiguities stemming
from fittings are found to occur in several other parts of the spectrum from panel (vi)
of Fig. 4. For example, to use fitting to guess that the peaks close to 2.7 ppm are, in
fact, nearly degenerate (each comprised to two components with exceedingly close
chemical shifts differing from each other by 0.001 ppm) would be certainly impossible.
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=256: Position (ppm), Width (ppm), |Amplitude| (au)

  1   0.985   0.180   0.122
  2   1.112   0.257   0.161
  3   1.548   0.172   0.135
  4   1.689   0.118   0.034
  5   1.959   0.062   0.056
  6   2.065   0.031   0.171
  7   2.145   0.050   0.116
  8   2.261   0.062   0.092
  9   2.411   0.062   0.085

  10   2.519   0.036   0.037
  11   2.675   0.033   0.008
  12   2.676   0.062   0.063
  13   2.855   0.016   0.005
  14   3.009   0.064   0.065
  15   3.067   0.036   0.101
  16   3.239   0.050   0.096
  17   3.301   0.064   0.065
  18   3.481   0.031   0.011
  19   3.584   0.028   0.036
  20   3.694   0.036   0.041
  21   3.803   0.024   0.031
  22   3.944   0.042   0.068
  23   3.965   0.062   0.013
  24   4.271   0.055   0.016
  25   4.680   0.136   0.113

Peak # Position Width |Amplitude|

(iv)  N
P
=256: Chem. Sh. (ppm), Relax. T

 2
 (s), Conc. (mMol/ww)

  1   0.985   0.087   7.930   0.71 Mob. Lip
  2   1.112   0.061   10.46   0.94 Mob. Lip
  3   1.548   0.091   8.775   0.79 Mob. Lip
  4   1.689   0.133   2.210   0.20 Mob. Lip
  5   1.959   0.251   3.640   0.33 Gaba
  6   2.065   0.501   11.12   1.00 NAA
  7   2.145   0.313   7.540   0.68 NAAG
  8   2.261   0.251   5.980   0.54 Gaba
  9   2.411   0.251   5.525   0.50 Glu

  10   2.519   0.435   2.405   0.22 Gln
  11   2.675   0.477   0.520   0.05 Asp
  12   2.676   0.251   4.095   0.37 NAA
  13   2.855   0.971   0.325   0.03 Asp
  14   3.009   0.245   4.225   0.38 Cr
  15   3.067   0.435   6.565   0.59 PCr
  16   3.239   0.313   6.240   0.56 Cho
  17   3.301   0.245   4.225   0.38 PCho
  18   3.481   0.504   0.715   0.06 Tau
  19   3.584   0.555   2.340   0.21 m−Ins
  20   3.694   0.431   2.665   0.24 Glu
  21   3.803   0.655   2.015   0.18 Gln
  22   3.944   0.377   4.420   0.40 Cr
  23   3.965   0.251   0.845   0.08 PCr
  24   4.271   0.285   1.040   0.09 PCho
  25   4.680   0.115   7.345   0.66 Water

Peak # Chem. Sh. Relax. Concentr. Fraction Assignm.

EXACT RECONSTRUCTION of SPECTRAL PARAMETERS, CONCENTRATIONS and ABSORPTION COMPONENT SPECTRA: FPT  (−)

Fig. 4 Padé-reconstructed converged spectral parameters, metabolite concentrations and absorption com-
ponent spectra corresponding to an FID typically encoded clinically from a healthy human brain via MRS
using an external static field B0 = 1.5 T and a short TE of 20 ms, with total length N = 1024 and bandwidth
1000 Hz so that t = 1 ms (see e.g., [56]). Top panels (i) and (iv): spectral parameters (left), assignments,
T2 relaxation times, concentrations and fraction of NAA at 2.065 ppm (right). The acronym ww denotes
wet weight. Middle panels (ii) and (v): absorption component spectra with peak numbers (left), absorption
total shape spectrum with peak numbers (right). Bottom panels (iii) and (vi): absorption component spec-
tra with peak numbers and metabolite assignments (left), absorption total shape spectrum with metabolite
assignments (right)
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Figure 4 is deemed to be most helpful for clinicians, since it gives both a graphic
and a quantitative overview of MRS. By enabling repeated cross-checking between
these two presentations, the clinician will more easily acquire a deeper grasp of the
method, together with acumen in interpretation of patterns typical of malignancy ver-
sus benign pathologies. This approach is illustrated later (see also [57,58]), with the
spectral features, metabolite concentrations and assignments from MRS, comparing
cancerous and benign ovarian cyst fluid. The benchmark studies described in [37],
together with the practical implementation described here represent a valid, exact, and
long awaited approach to quantification of MRS signals. Via this type of implemen-
tation, Padé-optimized MRS is set to indeed very soon become a standard diagnostic
tool for oncology, and beyond.

4.2 Separation of spurious (non-physical) from genuine (physical) information
for noiseless MRS data

The FPT has been shown to resolve and quantify tightly overlapped and even nearly
degenerate resonances that are abundantly present in MR spectra generated using
encoded in vivo time signals. Only within the FPT, pole-zero cancellation (Froissart
doublets) can be used to unequivocally distinguish true from spurious resonances.
This is demonstrated here in the noise-free case, but also for synthesized MR time
signals corrupted by noise at a level similar to realistic encoding conditions for the
full Nyquist range (from −3 to over 12 ppm), as presented in Ref. [37].

The number of spurious resonances is always several times greater than that of
the true metabolites. It is obviously an essential precondition for trustworthy clinical
applications that the genuine information be clearly and unambiguously identified.
In recent studies [51,69] via the powerful concept of Froissart doublets (pole-zero
cancellations), the FPT has been shown to achieve this task.

In Ref. [51], we have validated a powerful means of determining whether a given
reconstructed resonance is true or spurious. This is done by computing a sequence of
the Padé shape spectra {Pm/Qm}(m = 1, 2, 3, . . .) in the frequency range of interest,
say 0.5–5 ppm, as in Ref. [51]. Here, the fingerprint of detection of the exact number
K of resonances is the attainment of the stabilization value m = m′ after which a satu-
ration is systematically maintained by observing that Pm′+q/Qm′+q = Pm′/Qm′(q =
1, 2, 3, . . .). This critical transition (m = m′) yields the sought K via K = m′, as
verified to work in practice with MRS signals [51]. This is the concept of Froissart
doublets, or equivalently, pole-zero cancellations [50,51,69,70].

Specifically, the computation is carried out by gradually and systematically increas-
ing the degree of the Padé polynomials. As these degrees change, the reconstructed
spectra fluctuate until stabilization occurs. The value of the polynomial degree at which
the predetermined level of accuracy is achieved represents the sought exact number
of resonances K . This constancy of the reconstructed values can be obtained, e.g., via
the cannonical representation of the Padé polynomial quotients:

P±
K−1(z

±1)

Q±
K (z±1)

= p±
K−1

q±
K

∏K−1
k=1 (z±1 − z̃±

k )
∏K

k′=1(z
±1 − z±

k′)
, (5)
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where z̃±
k and z±

k are the zeros of polynomials P±
K−1 and Q±

K , respectively. The quo-
tient form from Eq. (2) leads to cancellation of all the terms in the Padé numerator
and denominator polynomials, when the computation is continued after the stabilized
value of the order in the FPT has been attained, so that:

P±
K−1+m(z±1)

Q±
K+m(z±1)

= P±
K−1(z

±1)

Q±
K (z±1)

, (m = 1, 2, 3, . . .). (6)

The Cauchy residue of P±
K−1/Q±

K from Eq. (5) represents the amplitudes d±
k whose

analytical expressions are:

d±
k = p±

K−1

q±
K

∏K−1
k′=1 (z±1

k − z̃±
k′)

∏K
k′=1,k′ �=k(z

±1
k − z±

k′)
. (7)

Therefore, it is obvious from Eq. (7) that whenever z±
k = z̃±

k , the amplitudes d±
k of

the poles from the Froissart doublets are exactly zero:

d±
k = 0 for z±

k = z̃±
k . (8)

In Fig. 5, we illustrate the concept of Froissart doublets for the noiseless case of a
synthesized FID derived from realistic MRS data encoded at 1.5 T (the same as was
used in Ref. [37]). We use the diagonal form of the FPT with its convergence region
inside the unit circle, namely FPT(+) [35,49]. After convergence has been reached,
there is a total of 128 resonances, but only 25 of these are genuine. The remaining 103
are spurious resonances. These spurious resonances are generated, since we did not
stop increasing the varying polynomial order m in the Padé quotient P+

m /Q+
m until this

latter ratio eventually reached its plateau or constancy region. Such a stabilized value
of P+

m /Q+
m was nowhere in sight at m = 25, which happens to be equal to the input

number of resonances. In other words, once the synthesized FID has been sampled,
we intentionally forget that we ever knew the true number of resonances and any of
their spectral parameters. From that point on, we treat the synthesized FID as an input
data of a totally unknown internal structure, just as if it were obtained in experimental
encoding. The top panel of Fig. 5 shows that all these spurious resonances are Froissart
doublets, namely that the poles stemming from the denominator polynomial, marked
as open circles automatically coincide with the corresponding zeros of the numerator
polynomial denoted by small filled circles (or dots). This is a graphic representation
of pole-zero cancellation. In contrast, there are 25 tightly-packed genuine resonances.
In the case of the FPT(+), all the imaginary parts of the genuine and spurious fre-
quencies are positive and negative, respectively (see Fig. 5). Thereby, the genuine
chemical shifts between 0.985 and 4.68 ppm are clearly separated from the spurious
resonances.

In the bottom panel of Fig. 5, it can be seen that all the spurious resonances have
amplitudes equal to zero, as per (8). At one-quarter of the total signal length (N/4 =
256) for the 25 true reconstructed resonances the absolute values of the amplitudes are
all seen to have non-zero values. Moreover, these exactly coincide with the input data,
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Fig. 5 Top panel (i): use of Froissart doublets to unequivocally extract the exact number KG of genuine
frequencies and amplitudes from the total number of the spectral parameters reconstructed by the FPT(+)

for the noise-free time signal. The FPT(+) separates the genuine from spurious frequencies in the two
non-overlapping regions, Im( f +

k ) > 0 and Im( f +
k ) < 0, respectively. Bottom panel (ii): all the spurious

(Froissart) amplitudes are identified by their zero values. Adapted from Ref. [51]

since full convergence has been achieved at this signal length. Again, the spurious
resonances appear in all the parametric estimators that must use more than twice the
number of unknown frequencies and amplitudes. This leads to an over-determined
system which yields more resonances than the actual number present in the analyzed
signal. The extra resonances are spurious and act as “noise” or are “noise-like”, even
in the case of a noiseless signal. The problem is first to identify these and then discard
them. Among all the estimators, only the FPT can achieve this task with certainty, and
this is done through the concept of the Froissart doublets, which acts as a powerful
filter of spurious “noise-like” resonances, as illustrated in Fig. 5.

Distinction of genuine from spurious peaks has been one of the thorniest challenges
to MRS. Solving this problem is of urgent clinical importance, particularly for can-

123



J Math Chem (2009) 45:563–597 581

cer diagnostics. For application of the Froissart filter to noise-corrupted synthesized
FIDs, see Ref. [37]. Needless to say, these noisy time signals are truly reminiscent of
experimentally measured FIDs.

4.3 Relevance of the FPT for direct application to MRS data from oncology

4.3.1 Distinction of malignant from benign ovarian lesions: exact calculation
of metabolite concentrations via MRS

In Refs. [57] and [58], the FPT was applied for the first time to MRS signals from
malignant and benign ovarian lesions. This problem area was chosen because of its
urgent clinical importance, namely that early ovarian cancer detection would have a
major survival benefit, and that the currently available methods have low diagnostic
accuracy. As mentioned, because of the small size and motion of this organ, in vivo
MRS is mired by problems of resolution and SNR, and yet, there is a rich store of
MR-observable compounds that distinguishes benign from cancerous adnexal masses
when in vitro MRS is applied. We postulate that Padé-optimized MRS could help over-
come the current problems hindering the acquisition of high quality MR data from the
ovary, and thereby enable in vivo MRS to become the method of choice for detecting
cancerous adnexal lesions.

Having applied the FPT to data derived from benign and malignant ovarian cyst fluid
encoded at high magnetic fields B0 = 14.1 T in vitro [31], we have obtained numerical
results as presented Refs. [37,57,58]. We have also specifically examined the conver-
gence pattern of the concentrations of the metabolites for benign versus malignant
ovarian cyst fluid. In Fig. 6, the chemical shifts are presented along the abscissae of
the six panels (i)–(vi), with concentrations as the ordinates. The input data are repre-
sented by the symbol x, whereas the Padé-reconstructed data are shown as open circles.
The data corresponding to the benign and malignant cases are presented in the left
[(i)–(iii)] and right panels [(iv)–(vi)], respectively. Prior to convergence, at N/32 = 32
[top panels (i) and (iv)], the only metabolite for which the correct concentrations were
obtained in both the benign and malignant cases is glucose at 5.22 ppm [1387µmol/L
(benign) and 260µmol/L (malignant), respectively]. At N/16 = 64 [middle panels
(ii) and (v)] and N/8 = 128 [bottom panels (iii) and (vi)], all of the reconstructed
metabolite concentrations are correct, as seen both numerically and by the graphic
representations. For N/16 and N/8, this means that the x’s are completely centered
within the open circles, indicating full agreement between the input and reconstructed
data. Figure 7 recapitulates the absorption spectra and the retrieved concentrations
with the full convergence achieved by the FPT using only 64 FID points out of 1024
data sampled in the time domain. This combined plot illustrates the overall power
of the FPT which performs shape estimation and quantification on the same footing
without any post-processing and with no reliance upon other estimators.

Figure 7 is deemed to be most helpful for clinicians, since it gives both a graphic and
a quantitative overview of the inner working of MRS. Specifically, such a procedure
as depicted on this figure, represents a comprehensive summary of signal process-
ing, encompassing line-shape estimation and quantification, which culminates in the

123



582 J Math Chem (2009) 45:563–597

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/32 = 32

FPT (−)

Benign

Glc

Gln

Lac

(5.22,1387)

(2.47,270)

(1.41 ppm,2603 µ mol/L)

(i)  Chemical shift (ppm)

( noitartnecno
C

µ
)L/lo

m 

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/32 = 32

FPT (−)

Malignant

Glc

Gln

Lac

(5.22,260)

(2.47,823)

(1.41 ppm,6688 µ mol/L)

(iv)  Chemical shift (ppm)

( noitart ne cno
C

µ
)L /lo

m  

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/16 = 64

FPT (−)

Benign

Converged
Glc

Cho

Crn

Cr

Gln

Met

Lys

Ala

Lac

Thr
Val

Iso

(5.22,1387)

(3.19,15)

(3.13,68)

(3.05,63)

(2.47,275)

(2.13,7)

(1.72,101)

(1.51,293)

(1.41 ppm,2479 µ mol/L)

(1.33,90)
(1.04,113)

(1.02,10)

(ii)  Chemical shift (ppm)

( noitartnecno
C

µ
)L/lo

m 

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/16 = 64

FPT (−)

Malignant

Converged

Glc

Cho

Crn

Cr

Gln

Met

Lys

Ala

Lac

Thr

Val

Iso

(5.22,260)

(3.19,42)

(3.13,79)

(3.05,66)

(2.47,828)

(2.13,62)

(1.72,490)

(1.51,586)

(1.41 ppm,6536 µ mol/L)

(1.33,248)

(1.04,395)

(1.02,79)

(v)  Chemical shift (ppm)

( noitartnec no
C

µ
)L/l o

m 

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/8 = 128

FPT (−)

Benign

Converged
Glc

Cho

Crn

Cr

Gln

Met

Lys

Ala

Lac

Thr
Val

Iso

(5.22,1387)

(3.19,15)

(3.13,68)

(3.05,63)

(2.47,275)

(2.13,7)

(1.72,101)

(1.51,293)

(1.41 ppm,2479 µ mol/L)

(1.33,90)
(1.04,113)

(1.02,10)

(iii)  Chemical shift (ppm)

( noitartnecno
C

µ
)L/lo

m 

11.52345
5

10

20

30

50

100

200

300

500

1000

2000

3000

5000

10000
Metabolite Map for Concentrations: x (Input), o (Pade)

B
0

≈ 14.1 T

N/8 = 128

FPT (−)

Malignant

Converged

Glc

Cho

Crn

Cr

Gln

Met

Lys

Ala

Lac

Thr

Val

Iso

(5.22,260)

(3.19,42)

(3.13,79)

(3.05,66)

(2.47,828)

(2.13,62)

(1.72,490)

(1.51,586)

(1.41 ppm,6536 µ mol/L)

(1.33,248)

(1.04,395)

(1.02,79)

(vi)  Chemical shift (ppm)

( noitartn ecn o
C

µ
)L/lo

m 

CONVERGENCE of CONCENTRATIONS of METABOLITES in FPT  (−)  ;   BENIGN (Left) , MALIGNANT (Right)  ;  FID LENGTHS :  N/M, N = 1024, M = 8 − 32

Fig. 6 Convergence of the Padé-reconstructed concentrations of the metabolites for the benign (left col-
umn) and malignant (right column) ovarian cyst data from [31]. At N /32 = 32, convergence has not yet
been achieved [top panels (i) and (iv)], whereas at N /16 = 64, the reconstructed concentrations for all the
12 metabolites have converged [middle panels (ii) and (v)]. This convergence is stable, at longer signal
lengths, as shown in bottom panels (iii) and (vi) at N /8 = 128 signal points, and it remains so, as we have
explicitly checked, at N /4 = 256, N /2 = 512 and N = 1024. Adapted from Ref. [57]

reconstructed concentrations as the diagnostically most relevant information from the
examined tissue.

Recent papers [57,58] were based upon the median values obtained for the metab-
olite concentrations estimated from the experimental data encoded by Boss et al.
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Fig. 7 Absorption spectra at full convergence (N /16 = 64) achieved by the FPT for the benign [top panel
(i)] and malignant [bottom panel (ii)] ovarian cyst fluid FIDs derived from the corresponding experimen-
tally measured time signals [31], with the retrieved concentrations of the 12 metabolites indicated above
the corresponding peak. Adapted from Ref. [57]

[31]. Studies [57] and [58] use noise-free FIDs, since we wanted to set up the fully-
controlled standard for the FPT in the case of the initial application of this method
to data within the realm of ovarian cancer diagnostics by MRS. This is methodo-
logically justified [50]. We are currently extending our analysis to noise-corrupted
synthesized data (still well-controlled) and to encoded FIDs. We are also including
doublet and multiplet resonances, since they are present in the encoding [31], as
well.

As stated, the high resolution of the FPT could also be of benefit for in vivo MRS
investigations, for which, poor SNR has been a major obstacle which hampered pro-
gress in ovarian cancer diagnostics via MRS. It has been suggested that in vivo MRS
could become the method of choice for accurate detection of early stage ovarian cancer,
insofar as the current obstacles hindering the acquisition of high quality time signals
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and the subsequent reliable analysis of spectra as well as their interpretation can be
surmounted [32].

Therefore, we plan as the next step to apply the FPT in a combined study of malig-
nant versus benign ovarian lesions, in which in vitro and in vivo clinical correlations
together with histopathology can be provided for cross-verification. This type of
image-histopathology correlation is considered to be particularly promising for
improving the diagnostic accuracy of MRS and MRSI in oncology [71]. Moreover,
MRS and particularly MRSI with its advantageous full volumetric coverage can pro-
vide additional, complementary information which in some cases can even enhance
the accuracy of histopathology [71]. Thus, Mountford et al. [72] state that MRS is
“now poised to be introduced into the pathology laboratory as an adjunct to, and in
some cases replacement for difficult pathologies. . . the combination of MRI and MRS
in vivo with correlative MRS on biopsy currently offers an unprecedented accuracy
for the diagnosis and prognosis for human diseases” (p. 3701).

4.3.2 The FPT applied to MRS data derived from breast cancer tissue, fibroadenoma
and normal breast tissue

The FPT is now being applied for the first time to MRS data from breast cancer, fibro-
adenoma and normal breast tissue. We chose this problem area because of its clinical
urgency and also to continue our earlier studies. Our previous examination via detailed
paired and logistic regression analysis [23,24,73] confirmed a very rich opportunity
for information extraction provided by in vitro 1H MRS analysis of metabolite con-
centrations in malignant versus non-cancerous breast tissue [25]. Several metabolites
(most notably lactate, which yielded 100% correct predictions) showed promise with
respect to diagnostic accuracy. Elevated lactate reflects the presence of cancer cells
whose energy source comes from the anaerobic glycolytic pathway. Animal models of
breast cancer also support the importance of assessing the rate of glycolysis and lactate
clearance with respect to the diagnosis and prognosis of breast cancer. Thus far, how-
ever, in vivo 1H MRS has not included lactate as a metabolic marker of breast cancer.
In vitro data also reveal that breast cancer samples are associated with a significantly
higher phosphocholine (PCho) to glycerophosphocholine (GPC) ratio compared to
the normal, non-infiltrated tissue [74]. These findings corroborate human breast cell
line research, indicating that malignant transformation is associated with a so-called
“glycerophosphocholine to phosphocholine switch” [74], which is related, inter alia,
to over-expression of the enzyme choline kinase responsible for PCho synthesis, and
also reflecting altered membrane choline phospholipid metabolism [75,76]. The three
proton MR visible choline compounds are choline (3.21 ppm), PCho (3.22 ppm) and
GPC (3.23 ppm), underscoring the clinico-biological importance of analyzing the rela-
tionship among these very closely overlapping resonances [73]. On the other hand,
by summing these three metabolites as “total choline”, as is currently done with in
vivo MRS, differential information about the component metabolites for breast cancer
diagnostics is irretrievably lost.

Our current work applying the FPT to MR data derived from normal and malignant
breast tissue, as well as fibroadenoma [25] is being carried out with a similar approach
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to what we have used previously on the subject of ovarian cancer [57,58]. Along these
lines, the initial results [77] suggest that the FPT provides clear delineation and quan-
tification of diagnostically important metabolites such as lactate which overlaps with
lipid, as well as choline, phosphocholine and glycerophosphocholine that are closely
overlapping to within 0.01 ppm. Moreover, the resolution performance of the FPT is
markedly superior to that of the conventional Fourier-based analysis with respect to
MR data from the breast.

As noted, breast cancer diagnostics using in vivo MRS have relied mainly upon
assessments of the composite choline peak. Notwithstanding the need to expand the
number of metabolites upon which this diagnosis is made, accurate quantification of
total choline via the FPT would represent a major breakthrough both for early detec-
tion of breast cancer and for assessment of response to therapy [11,19,26]. One of
the main current problems with attempts at quantifying total choline has been subjec-
tivity due to the uncertainty with lower and upper integration limits when using the
procedure of numerical quadratures to determine the concentration via peak integra-
tion, as typically done [31]. As mentioned, this problem does not occur with the FPT,
since this processor yields the spectral parameters unequivocally, thereby obviating
any subjective assessment about where a given peak begins and ends.

Moreover, the improved resolution and SNR provided by the FPT could help detect
low concentrations of total choline and its components. Furthermore, the FPT could
offer the possibility of detecting potentially informative resonances with short T2
relaxation times, that will have decayed at longer TE, such as myoinositol, whose
concentration yielded the clearest distinction between breast cancer and fibroadenoma
in our analysis [23,24,73] of in vitro MRS data from Ref. [25], as mentioned.

The FPT will also be used for quantitative analysis of MR signals from non-malig-
nant lesions that have thus far presented differential diagnostic dilemmas, notably
benign tumors, infectious or inflammatory lesions. It will be particularly important to
consider benign breast conditions that are difficult to distinguish from breast cancer
using other non-invasive diagnostic modalities. These challenging differential diagno-
ses include e.g., ductal hyperplasia, fibroadenoma and fibrocystic changes. The normal
lactating breast also has high concentrations of choline.

Poor specificity is currently the major drawback of MR-based modalities with
respect to breast cancer screening. For example, despite excellent spatial resolution
and generally superior sensitivity for breast cancer, MRI has lower specificity than
mammography [26,78,79]. Intensive surveillance programs with a large number of
false positive findings may impact unfavorably upon quality of life. Thus, questions
remain about the full appropriateness of breast MRI as a screening tool in asymptom-
atic, high-risk patients, with the need to improve specificity particularly underscored
[24,80]. The potential of MRS to improve the specificity of MRI in early breast cancer
detection has been underscored [26]. This was most recently illustrated in a series of
32 patients with non-contrast enhancing breast lesions, MRS would have reduced the
number of biopsies by 68% on suspicious, but actually benign lesions, while not miss-
ing any of the breast cancers [81]. Insofar as the expected improvements in diagnostic
accuracy are achieved by Padé-based in vivo MRS, this could then be applied in youn-
ger women at high risk for breast cancer with the aim of determining the suitability
of this newly emerging methodology for screening/surveillance.
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4.3.3 The FPT applied to MRS data derived from prostate cancer tissue, healthy
glandular and stromal prostate tissue

Spectroscopic imaging through in vivo MRSI has made a major impact in prostate can-
cer, where this method provides diagnostic clarity unmatched by literally any other
non-invasive approach. Compared to MRI alone, MRSI substantially improves the
accuracy with which prostatic tumor and extracapsular extension are detected, as well
as helping to distinguish cancerous prostate from benign prostatic hypertrophy [82].
Guidance as to the optimal site for biopsy has been substantially improved by MRSI.
Other areas of clinical decision-making with respect to prostate cancer have also been
impacted by MRSI. These include e.g., selection of treatment modality and timing,
treatment planning with brachytherapy, and assessing tumour regression versus recur-
rence after treatment.

The ratio between two MR-observable metabolites, choline at 3.2 ppm and citrate
(2.62–2.68 ppm), has been the cornerstone of applications of in vivo MRSI for prostate
cancer detection. Citrate is generally used as an indicator of healthy secretory activ-
ity of prostate epithelial cells, while choline reflects phospholipid metabolism of cell
membranes, and is a marker for membrane damage, cellular proliferation and density
typical of malignant processes.

However, as noted, there are clinically important exceptions with respect to these
two metabolites. For example, in stromal prostate tissue or metabolic atrophy, cit-
rate levels are low without cancer being present. With benign prostatic hypertrophy
(BPH) citrate can still be high despite coexistent malignancy. Overall, it has been noted
that citrate and choline alone are not sufficiently accurate markers for distinguishing
between various patterns of prostatic disease.

In vitro MRS reveals other metabolites whose levels help identify prostate cancer;
these include: spermine, spermidine, polyamines, lysine, myoinositol, scylloinositol
and taurine, etc. [68]. The first three of these are assigned to 3.1 ppm and lie therefore
very close to choline at 3.2 ppm. Myoinositol has a short T2 relaxation time and, hence,
will have decayed at longer TE.

In an approach similar to Refs. [57,58], we are also currently applying the FPT for
the first time to MR data derived from prostate cancer, healthy stromal and healthy
glandular tissue, as encoded in Ref. [83]. Our initial results suggest that the FPT
reliably retrieves the input parameters of spermine, spermidine, and choline, phos-
phocholine and glycerophosphocholine which are quite closely overlapping as well
as other diagnostically important metabolites, and thereby provides the most accurate
quantification. These analyses also include doublet and multiplet resonances, which
are characteristic of several of the metabolites of importance for detecting prostate
cancer [83], and represent another methodologic challenge for diagnostics.

Improved resolution and SNR are likewise clinically important for enhancing the
diagnostic yield of MRS in detecting the presence and extent of abnormal metab-
olite levels in patients with prostate cancer [84]. Our initial results indicate that the
Padé-optimized MRS will provide the needed resolution and SNR enhancement so that
healthy, hypertrophic and malignant prostate tissue are better distinguished, compared
to what current clinical practice has heretofore offered.
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4.3.4 The FPT applied to MRS data derived from melanoma metastases in regional
lymph nodes versus uninvolved nodes

As noted earlier, spectroscopic information from fine needle aspiration of biopsy
specimens has been found to provide rapid and quite accurate detection of metastatic
melanoma in lymph nodes [22]. The ratio of the area underneath the resonances in the
region from 1.8 to 2.5 ppm (containing lipid, lactate and other metabolites) to that of
choline-containing resonances in the region 3.1–3.3 ppm has been found to be signifi-
cantly higher in excised benign lymph nodes compared to those containing melanoma
[85]. It was thereby suggested that techniques such as in vivo proton MRS hold great
promise for assessment of sentinel nodes in patients with melanoma [86]. However,
in the more recent Ref. [22], diagnostic accuracy was still not sufficient, since it was
based upon the pattern-recognition method. There were 7% so-called “fuzzy” sam-
ples both in the primary (56 melanoma and 62 benign samples) and in the secondary
data sets (24 melanoma and 38 benign samples) that were excluded from the analy-
sis. Among the remaining so-called “crisp” samples, sensitivity was 92.3 and 87.5%
and specificity 90.3 and 90.3% in the primary and secondary data sets, respectively.
However, customary data analysis of the FIDs was performed using the FFT with all
its highlighted limitations.

Further, using the methodology of Refs. [57,58] on ovarian cancer, we are also
applying the FPT to data derived from Ref. [22] of MR spectra from regional lymph
nodes containing metastatic melanoma and from benign nodes. Of particular note is
that there are several closely lying resonances such as creatine, phosphocreatine and
lysine at 3.0 ppm that may yield further insights with quantification by the FPT, and
may thereby improve the accuracy with which lymph nodes with melanoma metasta-
ses are distinguished from uninvolved nodes. These and other lymph nodes have also
been listed in Ref. [71] as being among the areas where the diagnostic power of MRS
could be invaluable.

We envisage thereafter, to apply the FPT in a combined study of malignant ver-
sus benign dermatologic lesions, in which in vitro and in vivo clinical correlations
together with histopathology are provided for cross-verification. Particular attention
will be paid to difficult differential diagnoses and precursor lesions such as dysplas-
tic nevi. As noted, this type of image-histopathology correlation is considered to be
particularly promising for improving the diagnostic accuracy of MRS and MRSI in
oncology [71]. Moreover, MRSI with its advantageous full volumetric coverage can
provide additional, complementary information which in some cases, as already men-
tioned, can even enhance the accuracy of histopathology [72] and, especially, can help
define the extent of malignant disease.

From a practical viewpoint, it would be invaluable to connect an MRS scanner
with an interface which would provide clinicians with readily interpretable spectral
information from the investigated lesions. Such information would be displayed in a
clinically optimal way through spectra for benign versus malignant lesions containing
a quantitative review of the situation through metabolite concentration maps compared
against the corresponding standards, when these become available (they are absent at
present). This avenue has already been envisaged here and the appropriate illustrations
for direct use by clinicians have been given on Figs. 4 and 7, respectively, for normal
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brain and for ovarian cancer diagnostics. Clearly, a similar procedure would also apply
to skin cancers and, in particular, melanomas.

It should also be emphasized that invasive cutaneous melanoma has shown a
dramatic risk in both incidence and mortality, especially in the Nordic countries
where there is a large fair-skinned Caucasian population. Other, albeit less danger-
ous forms of skin cancer, such as squamous cell and basal cell carcinomas are also
increasing in Northern Europe and worldwide, and therefore represent an important,
universal public health problem. Early detection and accurate differential diagnosis
could potentially benefit from non-invasive methods such as Padé-optimized in vivo
MRS.

4.4 Other aspects of optimization within MR

4.4.1 The fast Padé transform applied to customary MRI with single coils

For MRI, image artefacts with edge distortions occur due to truncation within the FFT,
which cannot supply images that are simultaneously bright and sharp. This is because
sharpness of images stems from improved resolution which in the FFT is obtained by
increasing the number of grid points per axis. However, larger data sets unavoidably
contain more noise, which, in turn, reduces brightness significantly. The performance
of the FPT was assessed in [33] for multiple numerical integration (quadratures) that
are commonly encountered in MR physics. Therein, it was demonstrated that the
FPT greatly accelerates convergence (with increasing number of sampling points)
and yields unprecedented accuracy within 12 decimal places using only N = 512 or
1024 points relative to only 2 decimals in the FFT [33]. Combined with its robust-
ness and stability, it was expected in [33] that the FPT would emerge as the method of
choice for MRI which is a two-dimensional (2D) quadrature. This indeed turned out to
be the case later on [51]. In the meantime, we have implemented the 2D FPT for MRI
[87]. We have found that the optimal resolution (sharpness) of the FFT (512 × 512)

can also be achieved by the FPT using only 1/2 of the data record 512 × 512. This
achievement of the FPT has less noise and, as such, exhibits the optimal brightness,
as actually the FFT for the 512 × 512 data has, but without the needed sharpness.
Hence, the FPT can achieve simultaneous brightness and sharpness of images [87].
This is opposed to the FFT, where image artefacts due to truncation errors render the
two requisites about simultaneous brightness and sharpness mutually incompatible.
Within the FFT which has no extrapolation features, truncation errors are unavoidable
because of the impossibility to encode infinitely long data records.

4.4.2 The FPT applied to two-dimensional magnetic resonance spectroscopy

Two-dimensional MRS is customarily used to enhance detection of breast cancer
[88] and ovarian cancer [31]. The advantage of 2D MRS is improved separation of
overlapping resonances using cross-correlation plots. There is a very important and
fundamental difference between 2D FFT and 2D FPT. Namely, the 2D FFT is a train of
two one-dimensional (1D) FFTs applied sequentially, which amounts to the absence
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of coherence. In contrast, the 2D FPT treats both axes simultaneously and on the same
footing, thus enabling full access to extraction of all the coherence effects.

We have applied the FPT for the first time to 2D MRS signals. Our initial results
[89] reveal marked improvement in resolution, relative to the customary approach
using the FFT to these two-dimensional signals. In 2D MRS one of the time axes
is usually long, but the other must be short to maintain reasonable scanning time.
This is where estimators that can extract information from short time signals become
indispensable. We have compared the FFT and FPT applied to a brain phantom using
2D FIDs, kindly provided by Dr. Albert Thomas from the Department of Radiology,
University of California, Los Angeles, who encoded the data on a 1.5 T MRI scanner.

The computed 2D spectra were at the signal lengths N1 = 256 and N2 = 1024,
with the resolution improvement clearly demonstrated in the FPT compared to the
FFT. Moreover, the 2D FPT, PK−1(ω1, ω2)/QK (ω1, ω2), can perform quantification
by rooting the bivariate denominator polynomial QK (ω1, ω2) where the angular (ωp)

and linear ( f p) frequencies are related by ωp = 2π f p(p = 1, 2), as usual.
Thus, the FPT has been shown to fulfill this critical task of quantification in 2D

MRS, which is virtually unfeasible by attempts to extend any of the available 1D fitting
algorithms, such as the LCModel [44] etc., to 2D MRS. Various applications of the
fast Padé transform to 2D MRS signals from malignant and benign breast and ovarian
lesions are underway and will be reported in the near future.

4.4.3 Magnetic resonance spectroscopic imaging

As noted, molecular imaging can be accomplished by synergistically combining MRI
and MRS to yield MRSI. Rather than selecting a single voxel from three orthogonal
slices to encompass a specific volume, as is done in MRS, a spectrum in MRSI is
obtained at each point of selected grids that can be of various sizes. Thereby, full
volumetric coverage can potentially be achieved by MRSI. The advantages of MRSI
for cancer diagnostics, relative to reliance upon single voxel techniques, have been
repeatedly emphasized [16,52]. In particular, a single voxel of tissue pre-selected via
MRS might not be sufficiently representative of the pathologic process of concern. On
the other hand, MRSI through its multi-voxel coverage can help assess the degree of
involvement of tumour with surrounding healthy tissue [16].

Since the time signals from MRSI are precisely of the same FID nature as those
from MRS, clearly the FPT can also be applied with equal success to MRSI. We have
performed initial applications of the FPT to MRSI and demonstrated improvements
in the resolution of MRSI and mitigation of Gibbs phenomena [90].

Application of Padé-optimized MRSI will be of particular interest for improved tar-
get definition in radiation therapy (RT). Three-dimensional maps of metabolite ratios
provided by MRSI are currently being used to optimally shape the margins for defini-
tion of prostate cancers and brain tumors, including glioblastoma multiforme, replac-
ing the current definition of uniform margins [12,91]. This is particularly important
for confident sparing of non-involved brain tissue. It is anticipated that with Padé-
optimization of MRSI by providing maps of precise quantitative information about
metabolites concentrations, this goal will be achieved with greater fidelity.
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5 Relevance of the advantages of the fast Padé transform to diagnostics
by magnetic resonance spectroscopy in clinical oncology

As presently expounded, magnetic resonance spectroscopy and spectroscopic imaging
are increasingly recognized as potentially key diagnostic modalities in oncology. It is,
therefore, urgent to overcome the shortcomings of current applications of MRS and
MRSI in cancer diagnostics. We have explained why more advanced signal processing
methods are needed, and have demonstrated that the fast Padé transform is the sig-
nal processing method of choice to achieve this goal. The unprecedented algorithmic
success of the FPT emerges from the fundamental principles that link signal process-
ing to the larger and most successful theory, which is quantum physics. Thus far, poor
resolution has been a major obstacle to wider application of MRS and MRSI in oncol-
ogy. The superior resolution capacity together with the stability of the FPT for MRS
signals have been clearly established [35,36,47,58,64]. Benchmark studies have been
performed in which the FPT is shown to provide exact quantification of MRS signals
and thereby metabolite concentrations are reliably and unequivocally obtained with
an intrinsic and robust error analysis [49,51,54,60,69].

Distinction of genuine from spurious (noisy and noise-like) resonances has been
one of the thorniest challenges to MRS and MRSI. In practice, the number of spurious
resonances is always several times larger than the true ones. It is obviously an essen-
tial prerequisite for trustworthy clinical applications that the genuine information be
clearly identified. In our most recent papers, via the powerful concept of Froissart
doublets, the FPT is shown to achieve this task, as well, by filtering out completely
and with certainty all the spurious information from the final output data [51,69]. This
new approach is given the name: “Signal–Noise Separation” with the acronym SNS.
Thus, for the first time it is now possible to reconstruct the entire clinically relevant
information about metabolites, including their concentrations, as the most critical data,
without guessing about the veracity of this information, thus obviating the current need
for fitting with its attendant ambiguities, the most notorious one being non-uniqueness
of the attempted parametric estimation by VARPRO, AMARES, LCModel and other
similar recipes.

We have directly applied the FPT to MRS data derived from malignant and benign
samples from the ovary [57,58]. Padé-optimization is shown to provide dramatic
improvement in resolution and yields the unequivocal, exact parametric data needed
to reconstruct the metabolite concentrations that characterize ovarian cancer and dis-
tinguish this from non-malignant samples. This line of investigation is thus a promising
avenue for improved early ovarian cancer diagnosis, which we intend to pursue inten-
sively, given its urgent clinical importance and public health ramifications. Namely,
early ovarian cancer detection would have a major survival benefit, and the currently
available methods have low diagnostic accuracy (mainly due to poor specificity).

Currently, we are applying Padé-optimization to MRS data derived from breast, mel-
anoma and prostate cancer, and initial results are also encouraging. Other applications
of the FPT to MRI, 2D MRS and MRSI are expected to yield further improvements
in various aspects of cancer diagnostics, including target definition for radiotherapy
and assessment of response to therapy.
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We anticipate that MRS via Padé processing will reduce the false positive rates
of MR-based modalities and further improve the sensitivity of these methods. Once
this is achieved, and given that MR-based diagnostic methods are free from ionizing
radiation, new possibilities for cancer screening and early detection will open up, espe-
cially for risk groups, e.g., the application of Padé-optimized MRS in younger women
at high risk for breast and/or ovarian cancer. The need for accurate quantification of
closely overlapping resonances has been particularly underscored for breast cancer
diagnostics using MRS.

Further, MRS with the accompanying Padé quantification applied to prostate cancer
is particularly important for diagnostic enhancement, because of the current dilemmas
surrounding prostate cancer screening (e.g., cutpoints of prostate specific antigen—
PSA, etc.), as well as the public health importance of this malignancy.

There is a great need for a non-invasive diagnostic support for physicians in the early
detection of malignant melanomas. A person may have up to 100 moles; distinguish-
ing malignant melanomas from benign nevi is very difficult even for an experienced
dermatologist. For a general practitioner, it is often an impossible task. Padé-optimized
MRS seems to be an excellent candidate for further studies in this field by ultimately
providing quantitative standards to better differentiate malignant melanomas from
benign lesions.

It is fascinating that thus far MRS has made gigantic strides across several branches
of medicine by relying merely upon a handful of metabolites or their ratios, or even only
a single metabolite, such as total choline in the case of breast cancer. This restricted
metabolite window stems directly from the limitations of the conventional data anal-
ysis based upon the fast Fourier transform and the accompanying post-processing via
fitting and other related phenomenological approaches. It is, therefore, expected that
the diagnostic yield and overall performance of MRS in oncology will be significantly
enhanced by extracting reliable clinical information about many more metabolites.
Precisely this considerable enlargement is currently facilitated by the fast Padé trans-
form, on the basis of its proven validity, guaranteed by the first principles of physics
and chemistry. As a research field and a clinical diagnostic modality, MRS is nowa-
days undergoing a veritable renaissance. Starting from its enviable status of a highly
appreciated and well-established NMR method of analytical chemistry in research
laboratories, MRS developed to such a point in medicine that it is currently being
viewed by experts as the diagnostic modality which will possibly revolutionize not
only diagnostics, but also guided surgery and target delineation for radiotherapy.

Working primarily within MRS applied to diagnostics in clinical oncology, we have
systematically chosen to focus on the problems of critical and major public health con-
cern, such as breast, prostate, melanoma and ovarian cancer, as well as brain tumors.
We are doing this because we initially believed, and subsequently demonstrated, that
we can further the much need progress in fighting these major diseases. Consensus
exists worldwide among expert oncologists, that this fight must be a comprehensive
strategy, including multi- and inter-disciplinarity with the strongest link to basic sci-
ence research. The needed work in this area of biomedical signal processing for oncol-
ogy, ultimately depends upon: (i) a deep knowledge of the origin and mechanism of
generation of in vivo signals (ii) their clinical interpretation and identification of their
informational content with a particular disease, and (iii) application of the extracted
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information for clinical practice. Synergistically, many experts from different research
disciplines are needed to cover the workable chain: clinical problem-underlying phys-
iology-interpretation-clinical application with the aim of enabling Padé-based MRS
to soon become a standard tool for clinical oncology. We have shown that Padé-based
MRS, or MRS-FPT as it could justifiably be termed, is optimal to achieve this task
because of its multifaceted advantages, encompassing theoretical, mathematical, stra-
tegic and, most importantly with respect to the presently highlighted applications,
clinical aspects.

6 Conclusion

Accuracy, resolving power, convergence rate and robustness of any signal processor
depend on such obvious input parameters as the signal-to-noise ratio, the SNR, and
the total acquisition time of the investigated signal, or equivalently, the signal length
for a given bandwidth. However, a number of more subtle features of spectral analysis
play a decisive role of the overall performance capability of a given estimator. These
include the configurations of the poles and zeros in the complex plane, their density in
the selected part of the Nyquist range, the smallest distance among poles on the one
hand and zeros on the other, inter-separations among poles and zeros, their distance
from the real frequency axis, the smallest imaginary frequencies (the largest lifetimes
of resonant states) in the spectrum, etc. Among the most suitable mathematical tools
for investigation of the effects of the enumerated features are the Argand plots which
show the imaginary part as a function of the corresponding real part of a given com-
plex-valued quantities, such as the harmonic variables, the fundamental frequencies
and the corresponding amplitudes. The present study has a focus on signal–noise sep-
aration, the SNS, which can be best illustrated by displaying the Froissart doublets in
the Argand plots for complex fundamental frequencies.

Convergence in the fast Padé transform, the FPT, is achieved through stabilization
or constancy of the reconstructed frequencies and amplitudes. Moreover, the accom-
plished stabilization is a veritable signature of the exact number of resonances. With
any further increase of the partial signal length towards the full signal length, i.e.,
passing the stage at which full convergence has been reached, it is found that all the
fundamental frequencies remain constant. Moreover, machine accuracy is achieved by
the FPT, proving that when this signal processor is nearing convergence, it approaches
straight towards the exact result with an exponential convergence rate (the spectral
convergence). This proves that the FPT is an exponentially accurate approximation
for functions customarily encountered in spectral analysis in MRS and beyond. The
mechanism by which this is achieved, i.e., the mechanism which secures the mainte-
nance of stability of all the spectral parameters, as well as constancy of the estimate
for the true number of resonances is provided by the so-called pole-zero cancellation,
or equivalently, the Froissart doublets. This signifies that all the additional poles and
zeros of the Padé spectrum (given by the unique ratio of two polynomials), i.e., those
beyond the stabilized number of resonances, will cancel each other. In other words, the
FPT is safe-guarded against the contamination of the final results from extraneous res-
onances, since each pole due to spurious resonances stemming from the denominator
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polynomial will automatically coincide with the corresponding zero of the numerator
polynomial, thus leading to the pole-zero cancellation in the polynomial quotient of
the FPT. Such pole-zero cancellations can be advantageously exploited to differentiate
between spurious and genuine content of the signal. Since these unphysical poles and
zeros always appear as pairs in the FPT, they are viewed as doublets. More precisely,
they are called the Froissart doublets after Froissart who was the first to detect empiri-
cally this very useful phenomenon, which is unique to the versatile Padé methodology.
By definition, noise is spurious information by which the genuine part of the signal
is corrupted. Therefore, the pole-zero cancellation can be used to disentangle noise as
an unphysical burden from the physical content in the considered signal, and this is
the most important usage of the Froissart doublets in MRS, as well as in many other
applications of the FPT.

The overall benefit from the concept of the Froissart doublets is illuminated in the
present study within the FPT applied to the synthesized noise-free time signals. Spuri-
ous poles and zeros always appear, even in processing noiseless time signals by using
any estimator. This occurs because the stable fundamental frequencies and amplitudes
are typically reconstructed for overconditioned systems for which significantly more
signal points are needed than the total number of unknown spectral parameters. The
illustrations of the Froissart doublets necessitate the knowledge of both the zeros and
the poles of the complex-valued spectrum in the form of the polynomial quotient.
These spectral zeros and poles are obtained by solving the characteristic equations for
the numerator and denominator polynomial, respectively. Overall, using the Argand
diagrams, we found that the Froissart doublets are distributed along lines in the rect-
angular coordinates. These distributions are configured in a very regular and even
fashion for the investigated noise-free time signal. The pole-zero cancellations occur
systematically with a regular pattern, thus permitting a clear distinction between the
spurious and genuine resonances. Such an unequivocal distinction allows the exact
reconstruction of all the true values for the genuine spectral parameters, including
the fundamental frequencies, the corresponding amplitudes and the original number
of the physical resonances. The unique pole-zero cancellations for the Froissart dou-
blets are simultaneously accompanied by the corresponding remarkable zero-valued
amplitudes as yet another illustration of the FPT to distinguish genuine from spurious
resonances.

Overall the FPT is shown to separate sharply the genuine from the spurious res-
onances in the two disjoint regions for positive and negative imaginary frequencies,
respectively. Such an unprecedented separation of the physical from the nonphysical
informational content of the investigated data by using the FPT is expected to play a key
role in optimally reliable spectral analyses in all areas of signal processing across the
inter-disciplinary fields, including the powerful applications of MRS to early cancer
diagnostics and other aspects of clinical oncology.
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15. K. Belkić, Dž. Belkić, Spectroscopic imaging through magnetic resonance for brain tumour diagnostics.

J. Comp. Method Sci. Eng. 4, 157 (2004)
16. S. Nelson, Multivoxel magnetic resonance spectroscopy of brain tumors. Mol. Cancer Ther. 2, 497

(2003)
17. F.A. Howe, K.S. Opstad, 1H spectroscopy of brain tumors and masses. NMR Biomed. 16, 123 (2003)
18. R. Dhingsa, A. Qayyum, F.V. Coakley, Y. Lu, K.D. Jones, M.G. Swanson, P.R. Carroll, H. Hricak,

J. Kurhanewicz, Prostate cancer localization with endorectal MR imaging and MR spectroscopic imag-
ing: effect of clinical data on reader accuracy. Radiology 230, 215 (2004)

19. L. Bartella, E.A. Morris, D.D. Dershaw, L. Liberman, S.B. Thakur, C. Moskowitz, J. Guido, W. Huang,
Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value
for breast cancer diagnosis: preliminary study. Radiology 239, 686 (2006)

20. N.R. Jagannathan, M. Kumar, V. Seenu, O. Coshic, S.N. Dwivedi, P.K. Julka, A. Srivastava, G.K. Rath,
Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to
neoadjuvant chemotherapy in locally advanced breast cancer. Br. J. Cancer 84, 1016 (2001)

21. S. Meisamy, P.J. Bolan, E.H. Baker, R.L. Bliss, E. Gulbahce, L.I. Everson, M.T. Nelson, T.H. Emory,
T.M. Tuttle, D. Yee, M. Garwood, Neoadjuvant chemotherapy of locally advanced breast cancer: pre-
dicting response with in vivo 1H MR spectroscopy—a pilot study at 4T. Radiology 233, 424 (2004)

22. J.R. Stretch, R. Somorjai, R. Bourne, E. Hsiao, R.A. Scolyer, B. Dolenko, J.F. Thompson, C.E.
Mountford, C.L. Lean, Melanoma metastases in regional lymph nodes are accurately detected by
proton magnetic resonance spectroscopy of fine-needle aspirate biopsy samples. Ann. Surg. Oncol. 12,
943 (2005)
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55. I. Tkáč, P. Andersen, G. Adriany, H. Merkle, K. Ugurbil, R. Gruetter, In vivo 1H NMR spectroscopy
of the human brain at 7T. Magn. Reson. Med. 46, 451 (2001)

56. J. Frahm, H. Bruhn, M.L. Gyngell, K.D. Merboldt, W. Hanicke, R. Sauter, Localized high-resolution
proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn.
Reson. Med. 9, 79 (1989)
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87. Dž. Belkić, K. Belkić, High-resolution magnetic resonance imaging (MRI), Medical Imaging Confer-
ence IEEE (MIC), Portland, October 22–25, 2003 Abstract Number 1971 (CD)

88. M.A. Thomas, N. Wyckoff, K. Yue, N. Binesh, S. Banakar, H-K. Chung, J. Sayre, N. DeBruhl, Two-
dimensional MR spectroscopy characterization of breast cancer in vivo. Two-dimensional MR spec-
troscopy characterization of breast cancer in vivo. Technol. Cancer Res. Treat. 4, 99 (2005)
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